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Table 1 
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I I 

(I = const 

q = q@e+ 

h = const 1 ’ 0.666 1 
h # const 1 0.89 0.89 
h = const 1 0.81 - 
h # const 1 0.89 1.3 

- 

1 
- 
- 

- 
s/so 1 111 I L”/G 

0.7 2 1.21 
0.61 3 1.4 
0.79 1 1.19 
0.7 2 1.37 
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In the present paper we analyze the fundamental static and dynamic boundary 
value problems of the theory of elasticity, for the case of random loads. We in- 
troduce and study various generalized solutions of these problems. The solutions 

either appear as generalized random functions (random distributions), or belong 
to the spaces of summable random functions analogous to the Sobolev spaces. 
These spaces were introduced in [l], and we make use of the imbedding theorem 
for the random functions proved in that paper to establish the conditions under 
which the classical solution exists. 
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1, Curt&in cla~ar of random functfonr and d~8t~ibution$, Let SZ 
be a region in Rn and B be a space of complex random quantizes with a finite second 
moment and Hilbertian with respect to the scalar product (Ft q) = MF,q. The random se- 
cond order functions defined in Q can be regarded as functions with values in PI, The 
spaces Cm (52, H) and CP (a, H) consist of N-valued functions with derivatives in P 
of up to the m-th order, strongly defined {with respect to the norm of H, i. e, in the 
RMS sense) and c~~nu~s in the same sense, The spaces are analogous to the spaces 
Cm (0) and CP (52). The space L, (S2, H) (p > I) is formed by the random functions 
u (2) which are strongly measurable with respect to the norm of H and such, that the 
function x -+ 11 il (z) jH belongs to 1;~ (ft). 

If the region 61 is bounded, then the functions belonging to L, (Q, iFI) are Bochner- 
integrable in 6; . The mapping 

belongs to {D (Q), H}, i. e, it represents a linear, continuous mapping of the basic 
Schwartz functions D (Q) on H. Such mappings are called the second order random 
~~~bu~o~. Operations which can be performed on these d~~~~~~ are described in 
[I - 33, For ~n~~o~ ~~~g~ng to Lp (B, N) we can consider derivatives of any order 
in the sense of {D (Q), U). In [l] the author introduces the spaces $iJur (8, N) of ran- 
dom functions belonging to I,~ (~2, N) the derivatives of which also belong, in the same 
sense, to Lp (52, H) up to the I -tb order. The spaces kVfipr (52, H) are Banach spaces with 
respect to the norm 

[ 5 2 IP”u (4 !I&qr’p 
o ]afgf 

They are analogs of the Sobalev spaces w,” (Q) and have the same properties, In parti- 
cular El], when I > n i 2 + o , the space w$ (n, H) is csontinuously imbedded in C~aJ(Q, 
II). The manifold Co” ($2, H) is dense in LB (8, II), but the closure W& ($2, II) of the 
manifold Corn (52, H) on the norm of wsr (Q, W) is a characteristic subspace of WZ* (62, 
Hf. 

The criterion of the random unction u (z) ~long~ng to the spaces L2 (Q, a) and 
W2’ (hz, H) can be formulated in terms of its covariational function 

K (2, Y) = Mu (4 u fu) 
A random function a1 (z) equfvtient to II (3) and beknging to L, (e, H) will exfrt if 
and only if K ( 5, z) is integrable in Q. If the generalized derivatives 

Jq”,“” (2% !A fP-_2 (] a t .G 1) 

ale: also integrable,then IL~ (8) belongs to Wzr (52, a). 

Below we shall find it necessary to use the spaces of random vector functions and dis- 
tributions u = (u,, us, . . .?A,) which can be obtained by replacing H by B”. We shall 
denote the norms of the spaces & (Q, P) and W& ($2, XV) by i w &t and j/ * 81, and the 
scalar products by f-1 ‘)D and (., ‘)!. 

2, Btrtic problem with homogonaouc boundary condfttona, The 
boundary value problems of the theory of elasticity are associated with the following 
differential expressions: 



528 V. M. Goncharenko 

Let us consider e.g. the flrst boundary value problem in a bounded region 62 with a 

piecewise smooth boundary an 
Au = f (5 E Q), u = 0 (s E aa) (2. I) 

If ‘kla@ are determinate and f = f (5) is a given random function of second order, then 

the generalized solution of the problem (2.1) can be introduced in analogy with the de- 
terminate case using the energy method [4]. Let us consider the operator A,,: L, (Q, 

H’*)+L, (P, Hn) acting according to the formula A, u-Au , with Cs” (62, Hln) serving 
as its domain of definition. Since Co” (Q, 1~) is dense in L, (62, Iln) and, as we can 

easily verify, (A U, u). = (u, Au), for all u, u E Cp (Q, Hn), it follows that the opera- 

tor &is symmetric and it can be shown that it is positive-definite. Therefore there 

exists according to Friedrichs a selfconjugate expansion A of operator A,,. The equa- 

tion Au = f is single-valued and has a correct solution for all f E L, (Q, ~7’). This 
solution represents a generalized solution of the stochastic problem (2.1). 

The energy space of the operator A0 coincides with Wzol (Q, P) and the energy norm 
is equivalent to the norm of the space Wzl (a, Hn). The energy norm is generated by 
the scalar product 

[u, v]=(Au, v)o =2M Wdx, W=+r, 
s CklaPEkl Ea13 (2.2) 

R 

The generalized solution u causes the functional of mathematical expectation 

F (v) = 1/Z (Av, v),, - (V, f), (2.3) 

to assume its minimum value. Similarly to the determinate case, the generalized solu- 

tion of the stochastic boundary value problem (2.1) can be obtained using various pro- 

jection, variational and variational-difference methods. The properties of the operator 
A make it possible to obtain, for the stochastic systems, analogous results on convergence 

in terms of the probability norms 11 - lb, [I . II1 and [(Au, u)]“~. 

The generalized solution introduced above can also be investigated in the case when 
CklaP are random functions. The previous results are all retained provided that cklap 
belong to the space of random functions measurable and bounded in the measure equal 

to the product of the probability measure and the Lebesgue measure in 52. Other types 

of the boundary conditions can also be investigated. 

3. Cauchy problem with random data, Let u,,, u1 E {LI VP), FP), f (2, 
t) t {D (R*+‘), H”}, with f = 0 when t < 0. Under the Cauchy problem with random 
data we understand the problem of determining the random distribution u E (D (P+l), 
H*) which satisfies the equation 

u”+Au~f~~f+uo~8’(t)+ul~S(~) (3.1) 

and the condition that u = 0 when t < 0. 
Let E (5, t) be the fundamental matrix of dynamic equations of the theory of elas- 

ticity. The solution of the Ca.uchy problem formulated above is unique, and can be writ- 
ten in the form of convolution 

u = E * I, = h’ * f + [E * (uO x 6)l’ + E * (~1 X 6) (3.2) 
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The proof of existence of the convolution E * f, of the generalized function E E 

,!I’ (tl~l’l) with the random distribution f, can be carried out in the manner similar to 

the proof in [5] for the wave equation and nonrandom functions. 
The formula (3.2) makes possible the determination of the probability characteris- 

tics of the solution. Let e. g. u,,, ur and C be independent and have characteristic func- 
tionals mO, CP~ and CD,. Then the characteristic functional of the solution will be given 

bY 

where ” denotes inversion. 

The solution (3.2) represents a random distribution. It will be interesting to find out 
the conditions under which this distribution is generated by a random function of various 

classes, We have the following theorems: 
Theorem 1. If f E C ([O, T], wsr (52, H”)}, u,, E Wd+’ (8, H”) and u1 E Wzl (62, 

P) for every T > 0 and the regions 62 c R n, then the solution of the Cauchy prob- 

lem is a random function u (5, t) belonging to k%r (Q, H”) for all 0 < t < T . More- 
over, u’ E war-l (9, Hn) and the solution t + {u, u’} can be interpreted as being a 

continuous curve in the space WJ (Q, P) X W,l-1 (66, ffn). 

Theorem 2. If under the conditions of Theorem 1 1> (n -I- 1) / 2 $- 2, then the 

solution of the Cauchy problem becomes the classical solution, i.e. it represents a ran- 

dom function of the class I? (t > 0, P) n Cl (t > 0, ZP). 
The proof of Theorem 1 can be carried oilt according to the classical scheme [S] 

which involves regularizing the random distributions and making a p r i or i estimates 

in terms of the norms 11 - 111. The proof of Theorem 2 follows from the imbedding thee- 
rem for random functions. The conditions of Theorem 2 can be weakened by introducing 

e. g. a space WZ’ (Q, H*) with fractional 1. 

4. Mixed boundary value probleti, Let us consider the boundary value 

problem 
u” + Au = f, (5, t) E Q x R, (4.1) 
u = 0, (2, t) E ~2 x R, 

u (x7 0) = uo (4, u’ (x, 0) = Ul (x) 

where uo, ur and f are given random functions. Depending on the conditions imposed 

on their covariant matrices, we have either the classical solution, or various generalized 

solutions of the stochastic problem (4.1). 

Theorem 3. Let the derivatives Dxa~,,= of the covariant functions of the com- 

ponents of u. (x) and u1 (5) be integrable in Q ,wheny=z,forallO<IaIdZ+t 

and 0 < [ a ( < 1 , respectively, and let the analogous derivatives (0 Q 1 a 16 2) of 
covariant functions Kfs (2, t; y, z) of the components of f, be integrable in P with re- 
spect to 5 for y = Z, + = t and all t > 0. Let the condition of continuity in the large 

Then a unique generalized solution of class C ([0, m), Wz’ (52, R”)) exists. If in addition 

I > 5 (n = 3) or 1 > 4 (n = 2), then a classical solution exists. 
Solution of the stochastic problem (4.1) of class C {[0, w), W& (Q, R”)} andtheproof 

of Theorem 3 are analogous to those given in [S] for a determinate mixed boundary value 
problem for the second order hyperbolic equation. Using the methods given in [‘I], we 
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can obtain less strict conditions of existence of the generalized solution of class c ([0, 
co), Wz’ (Q, Hn). 

Theorem 4. If ug E Wzol (Q, Hn), u, E L, (Q, H1”) and f E L, In X (0, I’), fW7 

then there exists a unique generalized solution of the stochastic problem (4.1) of class 
C {lo, Tl, l&Or (52, Isn)}. Moreover, U’ E C {IO, 2’1, L, (s1, Hn)}. The dependence of 

{u, u’} on {f, uo, q} is continuous just as the mapping of the space L,[P x (0, T), 

H”] x w% (Q, Hn) X L, (Q, [I”) onto the space C {IO, Tl, Wzol (62, Hn) X L2 (Q, H”)). 

The results obtained remain valid if “h-lag are random functions belonging to the 

space L, , and they also hold for a number’of the boundary value problems of the theory 

of plates and shells. 
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